A coverage criterion for spaced seeds and its applications to SVM string-kernels and k-mer distances
نویسنده
چکیده
Spaced seeds have been recently shown to not only detect more alignments, but also to give a more accurate measure of phylogenetic distances (Boden et al., 2013, Horwege et al., 2014, Leimeister et al., 2014), and to provide a lower misclassification rate when used with Support Vector Machines (SVMs) (Onodera and Shibuya, 2013), We confirm by independent experiments these two results, and propose in this article to use a coverage criterion (Benson and Mak, 2008, Martin, 2013, Martin and Noé, 2014), to measure the seed efficiency in both cases in order to design better seed patterns. We show first how this coverage criterion can be directly measured by a full automaton-based approach. We then illustrate how this criterion performs when compared with two other criteria frequently used, namely the single-hit and multiple-hit criteria, through correlation coefficients with the correct classification/the true distance. At the end, for alignment-free distances, we propose an extension by adopting the coverage criterion, show how it performs, and indicate how it can be efficiently computed.
منابع مشابه
A Coverage Criterion for Spaced Seeds and Its Applications to Support Vector Machine String Kernels and k-Mer Distances
Spaced seeds have been recently shown to not only detect more alignments, but also to give a more accurate measure of phylogenetic distances, and to provide a lower misclassification rate when used with Support Vector Machines (SVMs). We confirm by independent experiments these two results, and propose in this article to use a coverage criterion to measure the seed efficiency in both cases in o...
متن کاملFast Kernel Methods for SVM Sequence Classifiers
In this work we study string kernel methods for sequence analysis and focus on the problem of species-level identification based on short DNA fragments known as barcodes. We introduce efficient sorting-based algorithms for exact string k-mer kernels and then describe a divide-and-conquer technique for kernels with mismatches. Our algorithm for the mismatch kernel matrix computation improves cur...
متن کاملFast String Kernels using Inexact Matching for Protein Sequences
We describe several families of k-mer based string kernels related to the recently presented mismatch kernel and designed for use with support vector machines (SVMs) for classification of protein sequence data. These new kernels – restricted gappy kernels, substitution kernels, and wildcard kernels – are based on feature spaces indexed by k-length subsequences (“k-mers”) from the string alphabe...
متن کاملSpaced seeds improve k-mer-based metagenomic classification
MOTIVATION Metagenomics is a powerful approach to study genetic content of environmental samples, which has been strongly promoted by next-generation sequencing technologies. To cope with massive data involved in modern metagenomic projects, recent tools rely on the analysis of k-mers shared between the read to be classified and sampled reference genomes. RESULTS Within this general framework...
متن کاملAccuracy of String Kernels for Protein Sequence Classification
Determining protein sequence similarity is an important task for protein classification and homology detection. Typically this may be done using sequence alignment algorithms, yet fast and accurate alignment-free kernel based classifiers exist. Viewing sequences as a “bag of words”, we test a simple weighted string kernel, investigating the effects of k-mer length, sequence length and choice of...
متن کامل